

Reaching intra-observer variability in 2-D echocardiographic image segmentation with a simple U-Net architecture

Hang Jung Ling, Damien Garcia, Olivier Bernard

CREATIS; CNRS (UMR 5220); INSERM (U1206); INSA Lyon; University of Lyon, France

Introduction

Problem

- Delineation of cardiac structures in 2-D echocardiography
 - Endocardial contour of the left ventricle (LV-Endo)
 - Epicardial contour of the left ventricle (LV-Epi)

	-End	

Results										
Methods	LV-Endo & LV-Epi		End-diastolic volume		End-systolic volume		Ejection fraction			
	HD±σ (mm)	ASSD±σ (mm)	Corr	MAE±σ (mL)	Corr	MAE±σ (mL)	Corr	MAE±σ (%)		
Intra- observer	4.7 ± 2.0	1.5 ± 0.7	0.978	6.5 ± 4.4	0.981	4.5 ± 3.9	0.895	4.7 ± 4.1		
CLAS	4.8	1.5	0.958	-	0.979	-	0.926	-		
Model #1	5.4 ± 3.2	1.6 ± 0.9	0.960	8.0 ± 7.3	0.960	6.6 ± 6.0	0.839	5.1 ± 4.3		
Model #2	5.3 ± 3.1	1.6 ± 0.9	0.965	8.0 ± 7.4	0.965	6.3 ± 5.6	0.831	5.0 ± 4.7		
Model #3	4.8 ± 2.5	1.4 ± 0.7 (**)	0.972	7.2 ± 5.9	0.972	5.7 ± 4.9	0.847	4.9 ± 4.2		
Model #3 + DAiI	4.5 ± 2.1 (**)	1.4 ± 0.7 (***)	0.974	6.8 ± 6.1	0.974	5.6 ± 4.8	0.863	4.6 ± 4.0		
Model #4	4.5 ± 1.9 (*)	1.4 ± 0.7 (**)	0.972	6.7 ± 5.9	0.972	5.5 ± 5.1	0.84	4.9 ± 4.3		
Model #4 + DAiI	4.4 ± 1.9 (***)	1.4 ± 0.7 (***)	0.972	6.6 ± 5.7	0.972	5.5 ± 4.8	0.843	4.7 ± 4.4		
nnUNet	$ \begin{array}{r} 4.3 \pm 1.9 \\ (***) \end{array} $	1.3 ± 0.6 (***)	0.976	6.5 ± 5.6	0.976	5.3 ± 4.6	0.876	4.4 ± 3.6		

Figure 1: Segmentation of the LV-Endo and LV-Epi on a 2-D echocardiographic image.

GOAL

- Automate the segmentation task using a simple network architecture.
- Reach intra-observer variability on both geometric and clinical ** metrics.

Methods

CAMUS Dataset

One of the largest echocardiographic open

Table 1: Comparison of geometric and clinical scores between different models. CLAS: Best reported algorithm on CAMUS dataset.

(HD: Hausdorff distance; ASSD: Average symmetric surface distance; Corr: *Correlation; MAE: Mean absolute error)*

Statistical test: Left-tailed two sample t-test conducted between each model and intra-observer variability for all metrics, (*): p-value < 0.05; (**): p-value < 0.01; (***): p-value < 0.001.

- dataset
- ✤ 500 patients
 - ✓ 2000 End-diastole/End-systole Apical 2/4chamber view images
- 10-fold cross validation

Model #1

- ✤ 5-layer U-Net
- ✤ 7M parameters

Model #2

- 5-layer U-Net + Deep supervision
- ✤ 7M parameters

Model #3

- 5-layer U-Net + Deep supervision + Data augmentation in training
- ✤ 7M parameters

Model #4

8-layer U-Net + Deep supervision + Data augmentation in training

- From Model #3 onwards, intra-observer variability was reached in terms of geometric metrics.
- High correlation between the estimated and the ground-truth volumes, (*Corr* > 0.97).
- Less accurate volumes and intra-observer variabilities than with CLAS due to temporally inconsistent segmentations.

Conclusions

Keys to reach intra-observer variability

- Data augmentation both in training ** and inference
- Reduced batch size and number of iterations per ••• epoch to improve the generalization ability

+ Patch-wise approach

✤ 30M parameters

Training Scheme

Batch size of 2
To boost the generalization ability

- Input image resized to 256 × 256 pixels for Model #1 to #3
- Model #4 uses a patch size of 1024 × 640 pixels

Model #3 and #4 were evaluated twice, with and without Data augmentation in inference (DAil).

References

- S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, et al (2019). "Deep Learning for ** Segmentation using an Open Large-Scale Dataset in 2D Echocardiography". IEEE Transactions on Medical Imaging.
- Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2020). ** "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation". Nature Methods, 1-9.
- Hongrong Wei, Heng Cao, Yiqin Cao, Yongjin Zhou, Wufeng Xue, Dong Ni & ** Shuo Li (2020). "Temporal-Consistent Segmentation of Echocardiography with Co-learning from Appearance and Shape". MICCAI.

